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Abstract
Current high-throughput experiments already generate enough data for retrieving the DNA sequence-dependent
binding affinities of transcription factors (TF) and other chromosomal proteins throughout the complete genome.
However, the reverse task of calculating binding maps in a chromatin context for a given set of concentrations and
TF affinities appears to be even more challenging and computationally demanding. The problem can be addressed
by considering the DNA sequence as a one-dimensional lattice with units of one or more base pairs. To calculate
protein occupancies in chromatin, one needs to consider the competition of TF and histone octamers for binding
sites as well as the partial unwrapping of nucleosomal DNA. Here, we consider five different classes of algorithms
to compute binding maps that include the binary variable, combinatorial, sequence generating function, transfer
matrix and dynamic programming approaches.The calculation time of the binary variable algorithm scales exponen-
tially with DNA length, which limits its use to the analysis of very small genomic regions. For regulatory regions
with many overlapping binding sites, potentially applicable algorithms reduce either to the transfer matrix or
dynamic programming approach. In addition to the recently proposed transfer matrix formalism for TF access to
the nucleosomal organized DNA, we develop here a dynamic programming algorithm that accounts for this feature.
In the absence of nucleosomes, dynamic programming outperforms the transfer matrix approach, but the latter is
faster when nucleosome unwrapping has to be considered. Strategies are discussed that could further facilitate
calculations to allow computing genome-wideTF binding maps.
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INTRODUCTION
One of the main goals in quantitative molecular and

cell biology is it to predict gene expression from

the assumptions of competitive and combinatorial

binding of multiple proteins at genomic regulatory

regions [1–3]. High-throughput genome-wide ex-

periments already generate enough data to hope

that this aim can be achieved. A number of recent

studies approached the challenging problem of pre-

dicting gene expression from the DNA sequence and

transcription factor (TF) concentrations [4–13]. For

example, early stages of Drosophila embryonic devel-

opment depend on �40 TFs, which bind at a similar

number of cis-regulatory regions, each spanning

�100–1000 bp and providing �10–20 binding sites

for two to five different TFs. Assuming that a typical

TF covers �10 bp, there are up to 410
¼ 1 048 576

possible combinations of 4 nt (A, T, G, C) at one

binding site. This number of combinations can

still be sampled experimentally using current high-

throughput methods to obtain sequence dependent

binding affinities in the form of so-called position

weight matrices (PWM). Methods of learning

PWMs are usually based on representing the DNA

sequence as a 1-D lattice of units (base pairs, di-

nucleotides, etc.) with each DNA unit contributing

additively to the energy of protein binding to a given

site depending on its position [14]. Current methods
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of learning DNA sequence dependent TF affinities

have been recently reviewed and are not discussed

here [15]. For many TFs, position weight matrices

are available via databases such as FlyTF [16],

JASPAR [17] and TRANSFAC [18]. For larger pro-

tein complexes, DNA binding affinities cannot be

determined by direct sampling. For example,

sampling over all possible 4147 nt combinations for

the stretch of 147 DNA base pairs contacted by the

histone octamer in the nucleosome is not possible.

Therefore, the problem of getting histone–DNA

affinities is more complex, but due to the intrinsic

symmetry of the nucleosome, it also has experimen-

tal solutions [19–22]. Several web servers exist for

calculating affinities of the histone octamer particle

to an arbitrary DNA sequence [20, 23–26].

Learning TF- and histone–DNA affinities is only

one part of the problem. Once protein binding

affinities have been determined [27], one has to

solve the reverse task: predicting how proteins at a

given set of concentrations arrange in the genome

where many TFs of different type and concentration

compete for binding to overlapping DNA sites with

more than three-fourth of DNA being occupied by

histones [28]. Notably, the reconstruction of the

complete binding map is algorithmically more diffi-

cult and computationally more expensive than the

problem of obtaining binding affinities of individual

proteins. In principle, if one assumes that binding

happens at thermodynamic equilibrium, all binding

probabilities can be calculated from a complete set of

thermodynamic parameters. While this type of

descriptions works well in vitro for dilute solutions,

one has to be cautious in the very crowded envir-

onment of the cell with ATP-driven molecular

motors acting against thermal equilibrium [29].

Nevertheless, in many cases studied so far, relative

binding probabilities calculated under assumption of

a quasi-equilibrium steady state reflect actual prefer-

ences for protein arrangement along the DNA

in vivo. This approach can even be used to describe

an obviously nonequilibrium process of sequence-

specific nucleosome removal from gene promoters

by chromatin remodelers [30]. Thus, although

there is no true thermal equilibrium in the living

cell, it is still reasonable to use the quasi-equilibrium

assumption. Here, we will address how to perform

these calculations. It is shown that single base pair

accuracy of the binding maps can be currently

achieved only when individual cis-regulatory modules

are considered in chromatin. For a genome-wide

analysis the computation time is becoming a bottle-

neck. Thus, the choice of the most efficient algo-

rithm is crucial for increasing the range of

applications that involve predicting gene expression

from TF binding maps.

BIOPHYSICAL FORMULATIONOF
1-D LATTICE MODELS
The majority of available data indicates that protein–

DNA binding should be considered at a single base

pair level to be biologically relevant for gene

regulatory processes. Each base pair within the bind-

ing site contributes to the protein–DNA contact, and

substitution of a single base pair may have large

effects on TF–DNA binding affinity [31–33].

Furthermore, the distance between TF binding

sites on the DNA matters for protein–protein inter-

actions and is largely affected by adding or removing

1 DNA base pair [34, 35]. For example, changing the

distances between TF binding sites at Drosophila
enhancers by several base pairs lead to essentially

different phenotypes [35]. In addition, recent studies

emphasize the importance of single-nucleotide

polymorphisms (SNP) for differential TF binding at

regulatory regions by not only changing the protein

coding sequence, but also by altering TF binding at

promoters and enhancers [36].

Accordingly, we will focus here on one-

dimensional DNA lattice models with single-base

pair units numbered by index n (Figure 1A). Each

DNA unit can be in one of several states determined

by the reversible protein binding as is typical for Ising

[37] and Markov chains [38]. We consider f types

of proteins, which can competitively bind DNA

depending on the protein type g, g¼ (1, f).
Macroscopic protein–DNA binding constants

K(n, g) depend on the position along the DNA n
and protein type g. For each protein–DNA complex,

it is possible to distinguish microscopic binding

constants k(n, g, h) corresponding to individual

protein–DNA bonds. Here, index h numbers base

pairs within the binding site, starting from the left-

most base pair covered by the protein. The product

of all microscopic binding constants for a given

complex yields the macroscopic binding constant

K(n, g). In principle, any stretch of DNA nucleotides

represents a potential binding site. Proteins g1 and g2

separated by l base pairs along the DNA can interact

with each other with a potential w¼w(l, g1, g2).

Proteins are characterized by the size of the
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corresponding binding site m(g), which is frequently

assumed to be constant for a given protein type as

shown in Figure 1A. However, in a more general

description also partial binding to DNA is possible.

In the example shown in Figure 1B, the protein can

bind a maximum of 3 DNA units, but complexes

with 1 and 2 bound units are also possible. This

model becomes particularly important for extended

protein–DNA complexes such as the nucleosome

where it is known that partial unwrapping of DNA

from the protein occurs spontaneously [39–47].

The nucleosome consists of 145–147 bp of DNA

wrapped around the histone octamer protein core,

and we will focus here on the 147 bp high-resolution

structure [48]. This structure can be represented in

different types of lattice models: (i) the histone octa-

mer is considered as a single ligand that covers

147 bp, treated exactly as with other proteins [49];

(ii) the octamer is described as being formed by four

histone dimers and so that partial nucleosome

disassembly is possible [50]; and (iii) the histone octa-

mer is treated as a single entity, which can form

a variable number of protein–histone bonds

(Figure 2A) [39]. The latter model allows for a

good representation of the physiologically relevant

partial nucleosome unwrapping. It immediately

suggests two possible effects: first, TFs can access

the DNA inside the nucleosome, especially close to

its nucleosome entry/exit site (Figure 2B) and

second, nucleosomes can invade the territories of

each other (Figure 2C). Both of these effects have

been observed experimentally [40–47]. Furthermore,

this model was shown to be quantitatively consistent

with in vitro measurements of DNA accessibility and

nucleosome positioning [39]. Since it takes into ac-

count early all-or-none binding models (Figure 1A)

and cooperative competitive binding of multiple

proteins to overlapping DNA sites, we will use this

nucleosome representation in the following.

At thermodynamic equilibrium, each bound state

i is characterized by its statistical weight

exp(��Gi/kBT), where �Gi is the energy change

corresponding to a given configuration of protein

arrangement along the DNA, kB is the Boltzmann

constant and T the absolute temperature in Kelvin.

The partition function Z is defined as a sum of

weights of all configurations of the system:

Z ¼
X
i

e��Gi=kBT ð1Þ

The summation in Equation (1) is done over all

possible configurations keeping the number of each

type of molecules in the system constant. Usually the

molecule numbers are given by their molar concen-

trations, and the partition function is considered to

be a function of protein concentrations, while the

DNA sequence, binding energies and stoichiometric

parameters are considered as constants. However, as

we will see below, in some cases it is useful redefin-

ing the partition function, e.g. as a function of the

DNA sequence.

The knowledge of the partition function allows

calculating any quantitative characteristic of pro-

tein–DNA binding. In particular, the probability Pi
that a given binding configuration is realized is a

ratio of the weight of a given state and the partition

function Z:

Pi ¼
e��Gi=kBT

Z
ð2Þ

The partition function in Equation (1) depends

linearly on individual binding constants and concen-

trations. Thus, the numerator of Equation (2) can

be defined for any binding event simply by

Figure 1: A lattice model for protein^DNA binding.
The DNA is represented as a 1D lattice of binding sites
(e.g. base pairs). Proteins bind DNA with the associ-
ation constant K depending on the protein type g and
the position along the DNA n. Index h numbers DNA
units at each protein^DNA binding interface. Protein
covers up to m DNA units upon binding (in general, m
depends on the protein type g; m¼ 3 in this example).
DNA-bound proteins interact at distances l� V, which
denotes the maximal range of interactions. (A) The
all-or-none binding model where each protein binds
completely to a binding site ofm units. (B) A more gen-
eral model where incomplete protein^DNA binding is
allowed with binding sites less or equalm base pairs.
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using the corresponding derivative of the partition

function [51].

It is usually assumed that each base pair cannot be

bound by more than one protein. However, one can

also construct more complex binding models within

the same mathematical framework, e.g. by including

explicitly multilayer protein assembly and DNA

looping [51]. In chromatin, some proteins bind to

the DNA and the protein component of the nucleo-

some while others recognize an interface consisting

of two nucleosomes, etc. The lattice binding

approach can cover these situations as described in

our recent work [50]. Here, we will not explicitly

consider these more complex binding scenarios but

the conclusions derived below about the underlying

mathematics will apply to these systems as well.

Once the physical model is defined, mathematical

models may be formulated and solved using different

algorithms, which are more or less efficient. The

main difference between computational algorithms

is in the way they calculate the partition function,

which determines the computation time. Here, we

will consider the five most relevant classes of

mathematical algorithms for this task.

Binary variable method
The simplest way to calculate the partition function

is via sampling through all possible states of the system

straight as defined by Equation (1). However, even

in the case of a single type of protein binding to

DNA, the number of possible configurations in-

creases as �mN where m is the number of possible

states of the DNA unit, and N is the DNA length.

For example, 2100 summations would be an already

too large a number for current computers. Therefore

this method can be applied only to short DNA lattices

[52, 53], or to a small number of known discrete

binding sites of a few TFs [54]. Many quantitative

models constructed for simple prokaryotic systems

such as the l-switch [55, 56] or the Lac operon

[57–59] are based on this method. This is reasonable

if just several binding sites with experimentally

measured thermodynamic parameters are included.

If any position along the DNA can be considered as

a potential binding site, calculations for DNA regions

>30 bp are not feasible using this method with cur-

rently available computers [60].

It was noted that the binary variable formulation

of protein–DNA binding is equivalent to the neural

Figure 2: A lattice model forTF access to nucleosomal DNA. Schematic 3D representations on the left panel and
the corresponding 1D representations on the right. (A) The nucleosome is represented as a ligand covering up to
m¼147 DNA base pairs. (B) TFs can access nucleosomal DNA partially unwrapped from the histone octamer.
(C) Nucleosomes are allowed to invade territories of each other so that a dinucleosome structure consisting of two
histone octamers would protect less than 2�147 DNA base pairs. (D) Due to steric exclusion, the situation when
both nucleosomes are partially unwrapped at the point of contact is prohibited in the implementation of the matrix
formalism used here. For the case of overlapping of two partially unwrapped nucleosomes, only configurations
that have the DNA interacting regions of both nucleosomes separated by one or more free DNA units are allowed.
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network models [59, 61–63]. Neural network

algorithms can handle multiple nonoverlapping

cis-regulatory modules. However, calculating pro-

tein–DNA binding at single base pair resolution,

characterized by zillions of overlapping sites, goes

beyond the capabilities of neural networks [64, 65].

Recently, Mjolsness [63] attempted to solve the

problem of overlapping binding sites at cis-regulatory

modules using binary variables, which required

invoking the transfer matrix formalism discussed

below. With respect to the pure binary variable

method, its main limitation is the assumption that

the partition function Z needs to be calculated by

sampling through all the states. Other methods that

we will consider use mathematical tricks to avoid

sampling through all the states and still get the

exact partition function.

Combinatorial methods
The algorithms in the next class of approaches use

binomial or multinomial expansions to derive

analytical expressions for the numbers of possible

rearrangements of proteins along the DNA [29, 66–

77]. For example, a protein, which covers m base pairs

upon binding to the DNA, may adopt (N�mþ 1)

positions along the lattice of length N. This yields

{[N� k� (m� 1)]!/(N�m� k)!/k!} possible re-

arrangements of k proteins. If binding is not

sequence-specific and proteins do not interact, each

of these individual configurations is characterized by

the same energy, and one can just multiply the weight

of one conformation by the number of conformations

with this energy. With this approach, the classical

McGhee–von Hippel [73] model was derived for a

protein binding nonspecifically to infinitely long

DNA. Other features can be also included using this

method, such as polarity of protein–protein inter-

actions [72, 78], competitions between a single spe-

cific site and nonspecific sites on a short DNA

oligomer [68], electrostatic interactions [69], binding

of flexible branched oligopolymers [66, 67] and

two-state models such as DNA condensation coupled

to ligand binding [29, 70, 71, 79]. Recently, Mirny

[80] obtained an equilibrium combinatorial solution

for the model of TF access to the

nucleosomal-organized DNA taking into account

nucleosome unwrapping. Previously, Chou [81]

applied combinatorial formulations to the kinetic

aspects of nucleosome unwrapping. However,

when protein–DNA binding is sequence-specific,

the description of binding to the lattice via

combinatorial coefficients is not sufficient since

each bound protein binds with a different energy.

Generating function method
Another classical approach is based on the idea to

characterize the system by a mathematical expression

called the generating function defined in terms of

infinite series of the partition function [76, 82–89].

The physical meaning of the generating function can

be understood as the partition function of the grand

canonical ensemble [88]. The grand canonical

ensemble is defined as the open system where the

numbers of proteins are not fixed, while the canon-

ical ensemble is defined as a closed system where

the numbers of proteins are fixed. The generating

function method is a powerful tool, which has

been applied to a number of sophisticated protein–

DNA binding models including for example the

‘piggy-back’ binding of proteins on the backs of

other proteins already bound to DNA [85] and the

problem of long-range interactions between

DNA-bound proteins [88, 90]. The classical gener-

ating functions method [83] fails if more than one

type of large proteins with long-range interactions

exists in the system [87], but a recent modification

of this method allows treating multiple-protein bind-

ing [82, 88]. The updated version of the generating

function method by Di Cera and Kong [82, 88, 89]

is based on recurrent relations as well as the class of

dynamic programming algorithms. Thus, our conclu-

sions about the computational time complexity of

the dynamic programming algorithms made below

will apply also to the generating function method.

Transfer matrix method
The transfer matrix approach constructs the partition

function by sequentially multiplying the transfer

matrices (weight matrices) assigned to each DNA

unit [39, 50, 86, 89, 91–101]. First matrix models

were made for oligonucleotide–DNA binding moti-

vated by the success of previous matrix descriptions

of the DNA helix-coil transition. Matrices were con-

structed both for the case of the all-or-none binding

as in Figure 1A [99] and for partial binding as in

Figure 1B [93]. Although the partial binding of

two oligonucleotides and partial unwrapping of

nucleosomal DNA are very different processes,

they can be described by similar mathematical for-

malisms [39]. The transfer matrices are constructed so

that each matrix element Qn(i, j) contains the weights

assigned to the combination of states where the
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lattice unit n is in a state i followed by the unit nþ 1

in state j. Prohibited combinations of states are char-

acterized by zero weights. The partition function is

given by sequential multiplication of all transfer

matrices enclosed between two unit vectors:

Z ¼ 1 1 ::: 1
� �

�
YN
n¼1

Qn �

1

1

:::
1

0
BB@

1
CCA ð3Þ

The algorithm of transfer matrix construction

depends on the model. A detailed description was

given previously and includes multi-protein com-

petitive binding with long-range interactions in the

presence of nucleosomes which can partially unwrap

[39]. For example, for the case of noncooperative

binding of a single ligand with length m¼ 3, we

have six possible states for each DNA unit:

(i) bound to 1st protein unit; (ii) bound to 2nd pro-

tein unit; (iii) bound to 3rd protein unit; (iv) free unit

not at the DNA ends; (v) free unit at the left DNA

end; and (vi) free unit at the right DNA end.

If all-or-none protein binding is considered as in

Figure 1A, the following transfer matrix can be con-

structed for DNA units far from the boundaries:

Bound, 1st unit

Bound, 2nd unit

Bound, 3rd unit

Free, not at ends

Free, left end

Free, right end

0 KðnÞc0 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 1

1 0 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBB@

1
CCCCCCCA

ð4Þ

Here, the number of the row corresponds to the state

of the unit n, and the number of the column corres-

ponds to the state of the next unit nþ 1. K(n) is the

binding constant for a site beginning at position n,
and c0 is the protein concentration. This matrix is

highly sparse because state 1 can be followed only

by state 2, and state 2 can be followed only by state 3.

If incomplete binding is allowed (Figure 1B), these

constraints are lifted and the matrix changes to the

following:

Here, instead of the macroscopic binding

constants K(n), microscopic binding constants k(n,
h) are assigned to each bond h within the binding

site (n, nþm� 1). Each unit preceding the leftmost

position of a bound protein is assigned a weight c0
for the entropy of removing the protein from the

solution to the DNA. Matrix element Q(1, 1) is mul-

tiplied by c0 twice to account for bringing from so-

lution to DNA two proteins contacting at this point.

Q(2, 2)¼ 0 since two proteins are not allowed to

be both unwrapped at the point of contact as

shown in Figure 2D. The latter condition is intro-

duced to disallow ambiguities for the elements

Q(1, 2) and Q(2, 3), which otherwise could have

been interpreted both as a continuation of the

bound protein and the contact of two partially

unwrapped proteins. The product of all microscopic

binding constants gives the macroscopic binding

constant:

Ym
h¼1

kðn,hÞ ¼ KðnÞ ð6Þ

From this, microscopic constants can be estimated

if relative strengths of interactions within the

binding site are known, which can be derived for

example by molecular dynamics simulations [39].

If all bonds within a binding site are equivalent,

one writes:

kðn,hÞ ¼
ffiffiffiffiffiffiffiffiffiffi
KðnÞm

p
ð7Þ

In the incomplete binding model [Equation (5)] the

number of nonzero matrix elements increases, and

the matrix is not sparse any more in contrast to the

all-or-none description [Equation (4)]. This is also

true for the general case of f protein types if the

maximal range of interactions V is comparable with

the typical length m of the DNA binding site.

Therefore, the computation time required to multi-

ply the matrices increases. The computation time of

the matrix approach scales linearly with N, since it

relies in the sequential multiplication of N matrices.

The number of matrix elements scales as O(m2f 2V).

Bound, 1st unit

Bound, 2nd unit

Bound, 3rd unit

Free, not at ends

Free, left end

Free, right end

kðn,1Þc20 kðn,1Þc0 kðn,1Þc0 kðn,1Þc0 0 kðn,1Þc0
kðn,2Þc0 0 kðn,2Þ kðn,2Þ 0 kðn,2Þ
kðn,3Þc0 kðn,3Þc0 kðn,3Þc0 kðn,3Þ 0 kðn,3Þ

c0 c0 c0 1 0 0

c0 c0 c0 0 1 0

0 0 0 0 0 1

0
BBBBBB@

1
CCCCCCA

ð5Þ

192 Teif and Rippe
 at U

niversity H
eidelberg on M

arch 9, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


Recurrent relations a.k.a. dynamic
programming
In 1974, when the transfer matrix and generating

function approach already existed, DeLisi [102]

proposed a new method to calculate the partition

function recurrently, which he called the renewal

theory. This method is based on the idea that the

partition function for a DNA of length N can be

calculated recurrently if partition functions for

smaller lattices are known [7, 12, 20, 89, 102–113].

Conceptually, this approach belongs to the class of

dynamic programming algorithms defined as recur-

rent solving complex problems by breaking them

down into simpler overlapping sub-problems. The

term ‘dynamic programming’ was coined in 1950

by Richard Bellman [114], but as far as we know,

dynamic programming algorithms for calculation of

protein–DNA binding did not exist until 1974.

DeLisi applied this method to the problem of

oligomer–polymer binding without long-range inter-

actions [106]. Examples considered in his original

publication could be also solved by other existing

approaches, and therefore the power of this method

was not noticed at that time. In 1978, Gurskii and

Zasedatelev [115] developed a recurrent theory

which considered protein–DNA binding with arbi-

trary long-range interactions. This case is already quite

complex and recurrent relations decreased its compu-

tational time complexity from exponential to linear

(as a function of DNA length N). However, the

method was again not widely accepted by the scien-

tific community for two other reasons. The first

reason was that back in 1978, there was no real

need for calculating such complex systems because

typical in vitro experiments conducted at that time

could be described with the simple McGhee–von

Hippel equation [73]. The second reason was that

Gurskii and Zasedatelev published the first derivation

of their equations in Russian. Although several

follow-up publications with simplified equation ap-

peared in English [107, 112], the authors themselves

mostly cited their original Russian works not access-

ible for the majority of scientists. In 1990s, Di Cera

and co-authors [89, 103, 104] also approached the

idea of the use of recurrent equations, now departing

from the generating function method. They derived

systematic mathematical theorems justifying the use of

recurrent equations, and applied this method to sev-

eral DNA–ligand examples. However, the recurrent

relation method became widely used only a decade

later, when high-throughput genome-wide binding

studies became feasible [7, 12, 20, 105, 107–111,

113, 116]. The latter publications considered the

problem of competitive and cooperative binding of

multiple proteins assuming the all-or-none binding

without the possibility of incomplete protein–DNA

binding.

For comparison with the transfer matrix formalism

described above, we will derive here an updated

dynamic programming algorithm that takes into

account TF access to partially unwrapped nucleo-

somal DNA. We will first follow the reasoning of

Gurskii and Zasedatelev. Consider the case of the

all-or-none binding of a single protein type (g¼ 1)

with long-range interactions. Let the DNA lattice of

N units be characterized by the partition function

ZN. The last lattice unit N is either free or bound

by the protein. If Nth unit is free, such a lattice is

equivalent to the lattice of length N� 1 character-

ized by the partition function ZN� 1. Therefore, the

difference between partition functions ZN and

ZN� 1 corresponds to all states where unit N is

bound by the protein. For all-or-none binding,

each protein covers m DNA units. Therefore, if

unit N is bound by a protein, units [N�mþ 1, N]

are also bound. Thus, two possibilities exist: this

protein either interacts with a preceding protein

separated by distance l�V, or it does not interact

if it is preceded by l>V free DNA units. The

weight of a bound protein which does not interact

with other proteins is given as K(N�mþ 1)� c0.
The weight of the lattice of length N, containing a

protein bound at units [N�mþ 1, N] separated by l
units (l�V) from the previous protein is given

as KðN � mþ 1ÞwðlÞc0ðZN�m�l � ZN�m�l�1Þ. Here

the term ðZN�m�l � ZN�m�l�1Þ corresponds to the

weight of the states with bound unit N�m� l.
Therefore Zn can be expressed according to the

Gurskii–Zasedatelev equation:

ZN ¼ZN�1þKðN�mþ1Þc0ZN�m�V

þ
XV
l¼0

wðlÞKðN�mþ1Þc0ðZN�m�l�ZN�m�l�1Þ

ð8Þ

This equation has the following starting

conditions:

Zn ¼ 1 if n < m; KðnÞ ¼ 0 if n < 1 ð9Þ

Equations 8 and 9 allow calculating ZN recurrently

for any N. One can see that the calculation time of

this algorithm scales as O(NV) and does not depend
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on m. This is the fastest existing algorithm for the

given task. If there are f> 1 protein types denoted by

index g¼ (1, f ), the recurrent algorithm transforms

to the following:

ZN ¼ ZN�1 þ
Xf

g¼1

KðN � mðgÞ þ 1,gÞc0ðgÞZN�mðgÞ�V

þ
Xf

g¼1

Xf

g0¼1

XV
l¼0

wðl,g0,gÞKðN � mðgÞ þ 1,gÞc0ðgÞ

� ðZðN�mðgÞ�lÞ � ZN�mðgÞ�l�1Þ

ð10Þ

Equation (10) with boundary conditions (9) holds

for the case of the all-or-none binding of multiple

competing interacting proteins with long-range

interactions. The time complexity of this algorithm

is O(Nf 2V). In a specific case w(l)¼ const for l�V,

the dependence on V vanishes [111, 112].

Now let us consider the case of the partial binding

that accounts for nucleosome unwrapping. Here, we

will follow the reasoning of DeLisi [106] to change

boundary conditions. In our initial considerations

above having a protein hanging out from the DNA

ends was prohibited. Now it will be allowed that

a protein starts at a unit n<N and protrudes

beyond the end of the DNA lattice. Since partial

unwrapping is possible, the knowledge that a given

DNA unit is bound does not define a precise binding

site of length m(g) as before. Instead, several possibi-

lities exist for the protein to have h1 units unwrapped

at its left end and h2 units unwrapped at its right end.

Correspondingly, the binding constant K� for a

protein, which covers the Nth base pair depends

on the number of formed bonds as a function of

N, g, h1 and h2:

K� ¼ KðN,g,h1,h2Þ ¼
YmðgÞ�h2

h¼h1þ1

kðN � mðgÞ þ h,g,hÞ, ð11Þ

where k(n, g, h) is the miscroscopic binding constant

as introduced previously. Index n¼N�m(g)þ h
numbers base pairs starting from the left DNA end,

and index h numbers base pairs starting from the

left-most position of the binding site for a completely

bound protein of type g (Figure 1). When counting

the states of protein–protein interactions for the pro-

teins separated by l�V DNA units, one has to keep

in mind that now both interacting proteins can be

partially unbound. This leads to the following

recurrent algorithm to calculate the partition

function for the case of partial binding of multiple

proteins with long-range interactions:

ZN ¼ ZN�1 þ
Xf

g¼1

XmðgÞ�1

h1¼0

XmðgÞ�h1�1

h2¼0

c0ðgÞZN�mðgÞþh1þh2�VK
�

þ
XV
l¼0

Xf

g0¼1

Xf

g¼1

XmðgÞ

h1¼0

XmðgÞ�h1�1

h2¼0

wðl,g0,gÞc0ðgÞ

� ZN�mðgÞþh1þh2�l � ZN�mðgÞþh1þh2�l�1

� �
K�

ð12Þ

According to Equations 11 and 12, the computation

time of this algorithm scales as O(Nf 2m3V). The

linear dependence of computation time on the

DNA length N both, in the dynamic programming

and transfer matrix algorithms most likely cannot be

improved. For example, in the conceptually related

problem of DNA melting, researchers are satisfied

with the computation time scaling as O(N2), which

allows calculating the double helix stability for

complete chromosomes [117]. In our case, most of

the complexity arises from the dependence on f 2

and m3 (or m2 in the case of a homogenous unwrap-

ping potential given by Equation 7 instead of

Equation 11).

Test calculations for aDrosophila
enhancer
In order to compare the performance of the transfer

matrix and dynamic programming algorithms, both

methods were applied to a prototypic biological

system using the same computer setup. The test

case is derived from a recent experimental study of

Drosophila embryonic development, in which fly mu-

tants with different distances between TF binding

sites in a particular enhancer region were investigated

[35]. To describe this system, three types of proteins

can assemble on the DNA: the TFs denoted ‘TF1’

(e.g. representing ‘Giant’) and ‘TF2’ (e.g. represent-

ing ‘Twist’) and the histone octamer forming the

nucleosome denoted ‘N’ in Figure 3. The 560 bp

DNA region under consideration contains two

6-bp binding sites for TF1 acting as a short-term

transcription repressor and four 6-bp binding sites

for TF2 acting as a transcription activator.

Repressor and activator do not touch each other

physically but may indirectly interact through a

nucleosome [118]. In this case, the possibility of par-

tial nucleosome unwrapping largely changes the

geometry of the complex and needs to be taken
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into account. In the current calculations it was

assumed that TF1–nucleosome contact is

cooperative; TF1 and TF2 physically exclude each

other within a distance of 6 bp; the nucleosome

can form at any position nonspecifically and can

partially unwrap characterized by the homogeneous

unwrapping potential [39]. The set of binding

parameters chosen for the calculations is described

elsewhere [118]. A regular laptop computer (Intel

Core2 Duo, 2.53 GHz, 3 GB RAM) was used for

the calculations.

Figure 3A shows an example of the binding map

calculated for this system using the transfer matrix

method, which required 3.8 s for one point of the

map. The map shows probabilities of protein binding

for each DNA base pair for each of the three protein

species. In the absence of nucleosome unwrapping,

the dynamic programming Equation 10 is much

faster, requiring �0.1 s to calculate the whole bind-

ing map shown in Figure 3A. However, in the

case of unwrapping of the nucleosomal DNA, the

dynamic programming algorithm (Equation 12) per-

forms slower than the equivalent matrix algorithm.

The reason is that physical models for the mathem-

atical representation of binding in both methods are

different. In the case of the matrix approach, the

situation when both neighboring nucleosomes are

partially unwrapped at the point of their contact is

prohibited (Figure 2D). Only the situation when one

of the two ‘colliding’ nucleosomes is unwrapped at

the point of the nucleosome–nucleosome contact is

allowed (Figure 2C). This limitation follows natur-

ally from the mathematics of the matrix algorithm

implemented here. It is justified in terms of the

biological system to consider only the case when

the partially unwrapped regions of two adjacent

nucleosomes are separated by at least one free base

pair. These constraints do not exist in the dynamic

programming algorithm as it is formulated in

Equation 12, which increases the computation

time. Nevertheless, the dynamic programming algo-

rithm can be considered a good choice in a situation

when nucleosome unwrapping can be restricted to a

limited number of base pairs close to the nucleosome

entry/exit. That would change the upper summation

limit for indexes h1 and h2 in Equation 12, signifi-

cantly decreasing the computation time. Figure 3B

shows calculation times for one point of the binding

map as a function of the maximum allowed length of

DNA unwrapping from the nucleosome. It is appar-

ent that the dynamic programming method is a

better choice when the maximum unwrapping

length is <20 bp, but the transfer matrix method

outperforms for larger unwrapping lengths. Our

previous MD simulations showed that unwrapping

of at least 30 bp needs to be considered in the lattice

model [39]. Experimental data support the view

that TFs can access the DNA even deeper inside

the nucleosome [41–47]. Whether the possibility of

complete nucleosome unwrapping needs to be con-

sidered remains to be tested in future experiments.

For the middle-range unwrapping lengths the trans-

fer matrix and dynamic programming algorithms

give similar calculation times (Figure 3B).

It should be noted that only exact solutions with

single base pair precision were considered here.

Using a more coarse-grained DNA lattice model

[50] or introducing thresholds neglecting weak
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Figure 3: Calculation forTF binding in the presence of
nucleosomes for a Drosophila enhancer. (A) An example
of a binding map calculated with the transfer matrix
formalism for a DNA region of 560bp with two
6bp binding sites for protein TF1 and four 6bp binding
sites for protein TF2. In the model, nucleosomes
can be present nonspecifically at any location,
theTF1-nucleosome contact is cooperative and TF1 and
TF2 exclude each other at distances <6bp.
(B) Calculation time for one point of the binding map
from panel A as a function of the maximum allowed
nucleosome unwrapping length. Solid line: dynamic
programming method; dashed line: transfer matrix
method. Computations of all points of the binding map
can be performed in parallel. Thus, this plot also gives
an estimate for the total time needed to calculate the
binding map.
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binding [27, 108] would make calculations faster but

less precise. Such possibilities are similarly applicable

to each of the algorithms and thus do not change the

relative differences in computing time. However,

given the well-established dependency of transcrip-

tion binding on the exact DNA sequence, it remains

questionable whether meaningful binding maps can

be obtained if the resolution is reduced above the

single base pair level.

Strategies for accelerating the
calculations
As discussed above, methods to calculate protein

binding maps for chromatin do exist. However, the

required computational time prevents their applica-

tion to calculating genome-wide TF binding as

required for predicting gene expression. This is due

to the higher complexity of the problem as, for ex-

ample compared to predicting nucleosome positions

from the sequence. The calculation of binding of

two proteins in chromatin with the transfer matrix

formalism for one Drosophila enhancer region shown

in Figure 3A is already �100 times slower than

predicting the arrangement of histone octamers

(without partial unwrapping) on a DNA of this size

using existing algorithms [20, 24–26]. Due to the

linear dependence of the calculation time on N,

calculations of genome-wide chromatin TF maps

would be millions of times slower. Thus, the

search for new more powerful algorithms is highly

relevant. However, it is also worth to consider the

underlying biology in more detail. The calculation

times estimated above are much larger than typical

equilibration times in the cell. Obviously, the cell

does not really ‘compute’ anything. Nevertheless, it

can be estimated that it cannot sample on the fly

through all possible configurations of all its TFs and

nucleosomes to derive the equivalent of a partition

function. What could be mechanisms that operate in

the cell to solve this problem? And can these be

adapted to the DNA lattice based calculations dis-

cussed here? To address these questions we propose

two approaches to accelerate the sampling, namely

parallelization and sequential ordering of binding

events (Figure 4).

It is usually argued that a high speed of biological

processes can be achieved by the parallelization of

‘calculations’ through many molecules. However,

in the case of our problem, the one-dimensional

connectivity of the DNA chain needs to be

accounted for. Therefore, parallelization to derive

the protein–DNA configurations is strictly speaking

not possible, neither on a computer, nor in the cell.

The latter statement holds assuming that all potential

binding sites overlap and no boundaries between

different chromatin regions exist. However, the

situation in the cell is very different in a number of

aspects: (i) different chromosomes can be calculated

in parallel, decreasing the computation time for a

complete human genome by an order of magnitude;

(ii) chromatin is further organized into domains.

One well-established structure are domains of

�1 million base pairs, which are readily apparent

in high-resolution microscopy images and by in
situ-cross linking [119, 120]. These 1 Mb genomic

subcompartments (containing �5000 nucleosomes)

Figure 4: Strategies for calculating genome-wide TF
binding maps. In this example, two different protein
types (shown in green and yellow) bind DNA. Each
protein can cover up to three DNA lattice units upon
binding. Each DNA unit can be in seven states (free, or
bound to one of the three segments of two proteins).
(A) The DNA lattice consisting of 12U can be in up to
127 (�1010) states. (B) Boundary element set in the
middle splits the DNA into two independent lattices.
Each lattice of 6U has up to 67 (�105) states. (C) The
sequential binding model. First, only binding of green
proteins is considered, characterized by up to 47 (�103)
states. Then the same number of states is added when
binding of yellow proteins to the DNA lattice with
fixed green proteins is considered.

196 Teif and Rippe
 at U

niversity H
eidelberg on M

arch 9, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


could represent independent DNA modules.

Considering these individual chromatin domains in

the lattice models would allow decreasing the com-

putation time by at least two more orders magnitude;

(iii) molecular insulators such as CTCF proteins can

provide boundaries for nucleosome and TF binding

to DNA [121, 122]. Since one boundary positions

up to 20 nucleosomes, this can reduce the number of

‘meaningful’ nucleosome positions by an order of

magnitude assuming that boundaries are distributed

more or less homogenously in the genome [50, 100]

(Fig. 4B); and (iv) large-scale formation of

more compacted and biologically inactive hetero-

chromatin on the scale of megabases could reduce

TF access to these regions [123, 124]. This could

significantly reduce the size of the actively

transcribed genome where TF binding needs to be

considered.

The second concept that is realized in the cell and

could be transferred to computations is to introduce

a sequential ordering of binding events (Figure 4C).

When the sequence of assembly of f types of proteins

is unknown, the computational complexity scales

with f 2 (Equations 10 or 12). On the other hand,

if protein assembly would follow a known sequence

of binding events, one would be able to calculate

binding maps for each protein one by one and just

repeat this f times (because previously bound proteins

change the binding interface for the next bound

proteins). This would decrease the computation

time from f 2 to f. In reality, protein binding in the

cell seems to operate via a mixture of stochaistic and

sequential binding events [125, 126], the latter being

more effective in the case of cooperative binding

[127]. Experimental details on this are currently

available for only a few well-studied systems such

as the interferon-b enhanceosome assembly [128].

However, it is clear that in many instances the bind-

ing of ‘pioneering’ protein factors is required before

other proteins can bind to a given locus. This is

particularly relevant for the binding to nucleosomal

DNA [129]. A number of these pioneering factors

have been identified that are thought to displace the

histone octamer from a given DNA target sequence

to allow for the subsequent binding of other factors

[28]. Accordingly, a complete decrease of the

computation time from f 2 to f is not possible, but

a significant acceleration of calculations appears

feasible.

In summary, a computational approach that makes

use of additional information on the biological

system with respect to genome compartmentaliza-

tion and sequential order of binding events appears

to be a promising strategy (Figure 4). It would

involve first splitting each chromosome into func-

tional chromatin domains, for example, according

to structural data [130] and/or the known positions

of boundary elements such as CTCF [121, 122] and

defining regions that oppose binding of a given TF

due to the underlying chromatin state. In addition,

the sequential order of certain binding cascades

would be introduced as additional constraints of

the type of ‘A binds before B binds before C’

(Figure 4C). The successful implementation of

these two approaches could significantly reduce the

computation time so that calculating genome-wide

TF binding maps in humans would become feasible.

Key Points

Predicting gene expression from the competitive and combinatorial
binding of multiple proteins at genomic regulatory regions is one of
the ultimate goals in quantitative biology.Here, we have considered
five classes of algorithms for calculating suchprotein^DNAbinding
maps using DNA lattice models in a chromatin context. The
following conclusions are drawn:
� Competitions for binding sites with histone octamers as well

as the partial unwrapping of nucleosomal DNA need to be
considered formeaningful calculation of TF DNA occupancy.

� The combinatorial approach is not suited for the problem of
sequence-specific binding. In the limit of large genomic regions
with overlapping binding sites, the binary variable approach
reduces to the transfer matrix approach, and the generating
function approach reduces to the dynamic programming
approach.

� The transfer matrix and dynamic programming algorithms are
the only two principal methods suited for calculatingTF binding
maps in chromatin. These approaches represent different ways
of calculating the partition function and cannot be reduced to
each other.

� The computation times for a genome-wide analysis of TF binding
are prohibitively long if one considers nucleosome unwrapping
in the absence of any further constraints of the system.

� Calculations can be accelerated by including additional biological
information with respect to genome compartmentalization,
heterochromatin formation and a sequential order of binding
events.
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